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Temperature states, ground states and relativistic vacuum 
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Abstract. We discuss some of the similarities (respectively differences) between temperature 
states, ground states and relativistic vacuum states in the context of spontaneous symmetry 
breakdown. 

Temperature ( p  <a) states (or KMS states) in statistical mechanics display remarkable 
properties, sometimes qualitatively different from ground ( p  = a) states and the vacuum 
in relativistic quantum field theories (RQFT). Some of these differences appear in the 
framework of scattering theory of quasi-particles (Narnhofer et a1 1983). There are 
also some similarities, apparent, for instance, in the recent versions of Goldstone's 
theorem for p <a (Landau et al 1981, Martin 1982) and p =a (Landau et a1 1981), 
the latter being the non-relativistic analogue of a well known result in RQM (Ezawa 
and Swieca 1967). It is our purpose in this paper to analyse some of these similarities 
(resp. differences) more systematically, in the natural context of spontaneous symmetry 
breaking. In the process, we formulate and  prove some ( p  <CO and ,5 = 00) statistical 
mechanical counterparts to certain results in RQFT, such as Coleman's theorem and 
properties of the charge operator (see, e.g. Swieca 1970 and references given there), 
which have not been considered elsewhere. Although not all of them are physically 
relevant, we hope that our discussion clarifies some of the interesting structural 
differences between these states. This may also be of some interest because models in 
statistical mechanics are often used as guides to some aspects of the behaviour of RQFT. 

As to the notion of symmetry, a group of strongly continuous automorphisms yg 
of the algebra of quasi local observables SI is assumed to exist11 with the additional 
property that it commutes with the time evolution a,, i.e. 

Y g .  a , ( A )  = a , .  ?,(A),  A € & .  

Already this algebraic concept involves a couple of hidden physical assumptions, in 
particular with respect to the range of interaction (Requardt 1982). 

The symmetry is called spontaneously broken when the state representing the 
vacuum (resp. the ground or temperature state) is not left invariant by the symmetry. 
This implies automatically that 'yg cannot be implemented by a group of unitary 

5 Supported in pan  by CNPq. 
1 1  Good papers to refer to for the application of C*- and von Neumann algebras to statistical mechanics 
are Hugenholtz (1972)  and Bratelli and Robinson 11981). 
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operators in the representation space, in particular suitable infinitesimal generators of 
the unitary group d o  not exist. To see this we have to remember how the global 
generators of the symmetry are usually defined. 

In the case of a continuous symmetry we are usually given in each concrete 
representation a formal infinitesimal generator expressed as an  integral j q(x, t )  d3x 
over a certain operator density q(x, t )  where q can frequently be inferred from the 
physical context (e.g. charge density, energy-momentum density etc). In RQFT q(x, t )  
is a local operator-valued distribution, in many-body physics it may have non-local 
features as for example the energy density (incorporating the usually non-local interac- 
tion potential). 

To give the global generator Q a rigorous meaning one has to approximate it by 
a certain localised sequence 

with a suitably defined sequence of functions fR. Frequently one defines f R  by: 
f R ( x )  : = f ( l x l / R ) ,  f smooth with f ( s )  = 1 for / S I  < 1, f(s) = 0 for Is1 > 2 (cf e.g. Kastler 
et al 1966). 

Remark. We d o  not discuss whether and in what sense Q, QR are related to e.g. T (  d)” 
and the special features arising in the context of KMs-states (there are some scattered 
remarks in the literature and  some unpublished material by Requardt). 

One now defines Q via 

Q -  .rr(A)a:= lim [ Q R ,  .rr(A)]O 
R-CC 

The above notion of symmetry guarantees that this definition is in fact time independent! 
If the symmetry is conserved (namely .rr(y,(A)) = U,. .rr(A) . U;’ ,  U, unitary, 

U,SZ = 0) we have also (n([Q, A l a )  = 0 (since Qn = 0). Spontaneous symmetry break- 
ing (SSB) however implies that there exists an  A E d (then being dubbed a symmetry 
breaking observable) such that 

lim ( W Q R ,  7dA)ln) # 0 
R-?r  

(fildyg(A))SZ) # (aIdA)n) =3 

(cf the above references), which furthermore turns out to be in fact just the characterising 
property ! 

Remark. One should however note that within a purely algebraic setting the connection 
between e.g. QR, yg is quite subtle and one would need the rather elaborate machinery 
of derivations on C* algebras. Instead of doing this we adopt the physicists’ point of 
view and take the existence of the suitable generator densities in the various representa- 
tions for granted. 

As to the Goldstone theorem proper, there are two versions, one valid for T >  0 
(Landau et a1 1981, Martin 1982, Requardt 1980), the other for T=O (Landau et a1 
1981). In the former SSB implies a space clustering not faster than  XI-^, with a = v--2 
(Martin 1982) and  a characteristic singularity at zero in the joint energy-momentum 
spectrum (cf Requardt 1980). In the latter the consequence is the absence of an energy 
gap (Landau et a1 1981). 
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The statement which for /3 < CC would seem to be in closest formal analogy (although 
without much physical content) to the assertion for p =E, namely, absence of a gap 
in the spectrum of the generator H p  of time-translations in the GNS representation is, 
however, seen to be empty because H p  is not expected to have a gap under rather 
general assumptions on the rate of time-like clustering (Haag et al 1974, proposition 
3). These are seen to hold for the free Bose gas (Haag and Trych-Pohlmeyer 1977), 
which does exhibit SSB, as well as for the free Fermi gas (Haag et a1 1974, which does 
not. 

It is well known (Sirugue and Testard 1971) that the weak-star limit w, as p -+ CO, 

of a net {up }  of K M S  states satisfies the KMS condition for the ground state, H, 2 0. 
Some mathematical properties of w are however distinct from those of the net { w p } ,  
and this fact has a number of implications in the theory of symmetry breakdown in 
statistical mechanics. We assume that we are dealing with an  equilibrium state w p  at 
p < ( K M S  state) or a ground state (at p = w)w,. The C* algebra of observables is 
d, and nu(&) denotes the G N S  representation of d associated to the state w on the 
Hilbert space 2 f m ,  with time-translation automorphism group a? (resp. a:), and 
generators H p  (resp. H, 3 0). It is convenient to consider the extension Gp (resp. Gx) 
of w p  (resp. w, )  to the von Neumann algebra IT,,(d)" (resp. rIwc(d)").  We write 
G,=(R,n) .  

Proposition I. (Hugenholtz (1972) theorem 4.12 or Bratelli and Robinson (1981)): For 
p <3;), Gp is faithful and satisfies the KMS-COnditiOn with iesp. to the extension G? of 
a? to (d)". 

Proposition 2. Gx is not faithful on rwx( d) c TO,( d)". 

Roo$ We present two strategies of proving results like these. (Note that this statement 
is non-trivial for r ( d )  in contrast to S T ( & ) " .  In fact, r ( . d )  is much smaller than r(d)" 
which is the whole B ( 2 )  in the irreducible case.) 

( i )  (Irreducible case). By the Kadison transitivity theorem (Dixmier !969, p 44), to 
any vector rlr E in an  irreducible representation r, of d there exists an element 
A E d such that 9 = x ( A ) n ,  furthermore one can construct a Hermitian element B E .d 
with r ( B ) 9  = 9, r( B)R = 0. This implies r ( B A ) * n  = r ( A * B ) R  = 0,  r ( B A ) R =  $ # 0. 

(ii) (General ground stare representation). We will exploit the notion of Arveson 
spectrum (cf e.g. Narnhofer et a1 1983 and references given there) and c h o o s e f e  L'(Iw) 
such that ? ( A )  has A-support in ( 0 , ~ ) .  

We then define A,:= sf( t ) a , ( A )  d t  which lies again in d. A, has now its A support 
(i.e. its Arveson spectrum, in more physical terms its energy support) contained in 
(0, a). With H, 2 0 one can for every A E spec.( H,) find an  A E d (by appropriately 
localising the A supp with the help of a suitable f) such that A-supp(A) is contained 
in an arbitrarily small neighbourhood of some A > 0 and .rr(A)R # 0 (ct' Kastler 1976 
0 IV). On the other hand, A* has its A-supp contained in (-50,o) which implies 
r ( A * ) R  = 0, namely again r ( A * )  # 0 but r ( A * ) R  = O !  

Remark. The second version of the proof is similar in spirit to a lemma proved in 
(Sirugue and Testard 1971, lemma 2.6). We thank one of the referees for this 
observation. 

Propositions I and 2 display the basic differences between ground states and  
temperature states in statistical mechanics: for /3 < a, ra( d)" contains no annihilators 
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of the state, while already 7~,(d) does. These differences are most clearly seen in the 
context of SSB by comparing Goldstone's theorem with its counterpart, a theorem of 
Coleman. This theorem, sometimes described by the sentence 'invariance of the vacuum 
is invariance of the world', may be informally stated in RQFT as follows. 

Theorem. Let Q be the charge corresponding to a translation covariant local current. 
Then, if Qn = 0, then a, ju(x)  = 0 and therefore [Q, HI = 0. A mathematical proof of 
a generalised and precisely formulated form of the above theorem was provided in 
(Gal-Ezer and  Reeh 1974, 1975) to which we refer for references to the original papers. 

This theorem contains essentially two assertions: Qn = O-+ a , j u ( x )  = O+[Q, HI = 0. 
In non-relativistic theories Qn= 0 does not in general imply a,jY(x) = 0, because of 
the eventual non-local character of the Lagrangian density. Hence, in statistical 
mechanics the latter should state that if the equilibrium is invariant under a continuous 
symmetry group with generator Qp then [Q,, H p ]  = 0 (in the sense of spectral projec- 
tions). We summarise the (mostly known) results below. 

Goldstone theorem Colemans theorem 

Equilibrium state 3 not invariant under 
continuous symmetry group T.y but tinuous symmetry group jS.  
nevertheless the formal generator of the 
symmetry group commutes with the gen- 
erator of time translations. 

Equilibrium state 6 invariant under con- 

p <E: H p  has no gap not true (but for 
reasons not directly? related to SSB, cf 
Haag et a1 1974, prop. 3), the Goldstone 
phenomenon shows up  however in a cer- 
tain weak clustering (cf Landau et a1 198 1, 
Martin 1982) and  a characteristic singular- 
ity at the origin in the joint ( H ,  - 
Pp)-spectrum (cf Requardt 1980)! 

[Qp,  H,] = O  true (see below). 

p = a: H ,  has no gap true (see Landau et [Qw, H,] = 0 not true (see below). 
a1 1981 and  references given therein). 

Proof of Coleman's theorem for ,6 <a: by a theorem of Takesaki (Hugenholrz (1972) 
theorem 7.2). G p  defines uniquely a one-parameter automorphism group a y p  of rUB( d)" 
(the modular automorphism) and satisfies the K M S  condition with respect 
to this automorphism group. Hence, by a theorem of Herman and Takesai in the 
context of von Neumann algebras (Herman and Takesaki 1970), see also (Sirugue and  
Takesaki 1970) or theorem 7.3 of Hugenholtz 1972) and the fact that 3, is invariant 
under f?: 

g y B  = ( T $ ) - ' g y P T $  

which implies that [Q,, H,] = 0 in the sense of spectral projections. 

+ There is, however, a symmetry being always spontaneously broken in systems with non-vanishing density, 
namely the Galilei boosts (Swieca 1967) and  unpublished material of one  of the authors ( M  Requardt) .  
The Goldstone particles are,  the hvdrodynamical phonons (short-range interaction!). 
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Proof of theorem f o r  /3 =CO. Consider the infinite ferromagnetic Heisenberg model 
(Streater 1967) given by (for each finite A c Z": for the definition in the infinite tensor 
product space, see Streater 1967): 

Hi=- C (J" ,S :S:+JY,S~Sr+J ' ,S :Sf )  
I J E  \ 

J t  3 0, ( I J t I ,  IJ",) =s Jf, JG # J ;  for some i,j. Then the infinite volume ground state still 
has 'all spins down' (that is, in the corresponding IDPS (Streater 1967), the properly 
defined infinite volume Hamiltonian is positive (Hepp 1972), and is therefore invariant 
under rotations around the z axis, with self-adjoint (unbounded) generator 

However, [Om, Ha] # 0 if JG # J ;  for some i, j .  

The ground state of statistical mechanics is therefore distinct from the field theory 
ground state, where Coleman's theorem holds. This is true because the axioms of 
quantum field theory (including microcausality, which is not valid in statistical 
mechanics) imply that the vacuum is already a cyclic and separating vector for the 
von Neumann algebra of a spacetime region R ( 6 )  (theorem 4.3 of Streater and 
Wightman 1964). 

Although propositions 1 and 2 explain mathematically the differences between 
ground states and temperature states in the context of spontaneous symmetry break- 
down in statistical mechanics, a physically more satisfactory explanation may be found 
from the point of view of stability under local perturbations of the dynamics (Bratelli 
1978): if w is a factor state on a L'-asymptotically Abelian C*-dynamical system (a, T) 

(Haag et a1 1975, Bratelli et a1 1978) satisfying the stability condition 

lim l r  dtw([A, T , ( B ) ] ) = O  
T+E - j -  

VA, B E  a, then w is a extrema1 (7,  P ) - K M S  state for some /~E[WU{*~O} (theorem 6 
of Bratelli et a1 1978). However, a temperature state satisfying (*) is just a KMS state, 
but a ground state satisfying (*) not only satisfies the KMS ground state condition 
(Sirugue and Testard 197 1 ) 

H,aO 

but also has a gap 

H , Z E > O  

(theorem 3 of Bratelli et al 1978). This is related to the fact that for a ground state 
the perturbation may cause the formation of an infinite number of infraparticles (Bratelli 
et a1 1978). 

Concerning properties of the generator of the symmetry, in RQFT we have the 
following important result (Maison 1972, see also Swieca 1970): 

for all A E T (  d) (in the following we identify, for reasons of notational simplicity, 
A, B with n-(A),  T(B)). 
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This result can e.g. be used to prove the following physically desirable property?: 

lim (A01 QREn) = (An1 Q E n )  
K - c c  

in case the symmetry is conserved, i.e. Q being a well defined global generator, that 
is, we have 

lim (AnlQREn) = lim {(Anl[QR, Bin) - (n (A*BQRn))  
R-m R +m 

= ( A n l Q E n ) + f  lim (nl[QR, A*E]n) = (AfllQEn). 
R + m  

= O !  

One can ask the natural question to what extent this result holds in the non-relativistic 
regime. Somewhat surprisingly, the answer seems to depend on whether another 
(discrete) symmetry is conserved or not (compare Requardt 1982, last section). 

Denoting time reflection by 0, it is implemented by an antiunitary operator if it is 
conserved. The physically relevant observables usually display a simple behaviour 
under 8, i.e. @(A) = * A with = ZL 1. Then we have the following proposition. 

Proposition 3. Assuming that the symmetry yg is spontaneously broken with symmetry 
breaking observable A, local generators QR (cf the introductory remarks of this paper), 
if 8 is conserved, i.e. 8 0  = a, and if QR, A transform under f3 as described above, we 
have: 

for R sufficiently large. 

Proof 

(n1AQRn) = (enlAQRen) = (nleAeeQ,en) = E A E O ~ ( A Q R ~ L ~ ~ ~ )  = B A E ~ , ( ~ I Q R A ~ ~ )  

(without loss of generality A can be chosen self-adjoint!). This yields 

( ~ / [ Q R ,  AIR) = ( 1  - E Q , E A ) ( ~ I Q R A ~ ) .  

The LHS is diflerent from zero for sufficiently large R since the symmetry is spontaneously 
broken, with A breaking the symmetry i.e. we have necessarily This implies = 

(nl[QR, A l a )  = 2(fllQRAn)* 

We see from this that the corresponding relation holds in the non-relativistic regime 
for a symmetry breaking observable and provided that time reflection is conserved. 
However in contrast to RQFT it does not hold in general, i.e. for all A E   si?), in 
particular nothing can be concluded for A’s with 

In any case two interesting features can be inferred from the above relation. First, 
= - E ~  for a symmetry breaking observable. Second, the range of ( n I q ( x ,  0 ) A n )  

appears to be directly related to the conservation of time reflection! Note that in case 
of a local q ( x ,  O), A strictly local, (in fact the situation most frequently encountered), 
the LHS becomes independent of R t  already for finite R. This implies immediately that 

= E ~ ~ .  

t This property implies in particular the hermiticity of the charge operator between states of type AR (see 
Swieca 1970). 
t In  fact, (Rl[q(.u, O ) ,  Alfl l= 0 for 1x1 > RA! This implies (nlQR, AIR) = (Rl[QR, AIR) for R, R’> RA. 
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(RIq(x, 0)AR) has only afinite x-range (which is highly non-trivial!). In case of a not 
strictly local density q, e.g. the Hamiltonian density, the LHS acquires nevertheless a 
finite value in the limit (for short range interaction) so that also in this case a certain 
fall off of (RIq(x, 0)AR) can be inferred. There are in fact systems with ( f i / q ( x ,  0)AR) 
displaying a long-range behaviour. In that case time reflection has necessarily to be 
spontaneously broken! (Note that this does not contradict the picture that SSB implies 
long range order. It is usually the autocorrelation (S1/A(x)AR) -(A)’ which displays 
long range correlations.) 

As a case in point that proposition 3 is not true for arbitrary A’s, choose the free Bose 
gas below the criticai point. For p = ix, the field operators have the form $(x) = 
+ o ( x ) + p ” ’  eia with +bo a Fock field, p, cp condensate density resp. phase. The local 
generators of the gauge symmetry have the form: 

QR = j ( f R  1 9  

R - m  lim ( w ( f R ) , j ( f ) l n )  = 0,  

A x )  = +b+(x)*(x) - ( f i I~ /+(x)Wx)R) .  

As observable A we take j ( f ) ,  j ( 0 )  # 0. Then we have 

R-CC lim (fiIj(fK)j(f)a) = j ( o ) .  

In the case /3 < CO we have the representation 

+(f) = ~ ~ ( ~ l + p ~ ” ’ f ) 0 u + U 0 ~ ~ ( p ” ’ f )  

i(f) = * ~ ( p ” z f ) o u + u o * o ( { l  t - p } ” ” )  

with 4 the representation in & I .  With Q~ := j ( f R )  - j ’ ( j R ) ,  j ( f R )  E , r ~ ,  j r ( f R )  E 
precisely, affiliated with & and d‘), 

(more 

with c # 0 for a non-vanishing condensate density. 
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